A[nother] beamforming strategy

an information theoretic look at beamforming with PAFs

Greg Hellbourg

CSIRO Astronomy and Space Science

What is beamforming?

- Beam forming $=$ data reduction
- Exploit sensors' covariance

- Sensors can be of various nature:
- Non-co-located antennas
- Time samples
- Pixels
- Frequency channels
- Beamformers can be of various nature:
- Spatial beamformers
- Time-domain digital filters
- Spatial (image) filters
- Cyclic filters

Beamformed output

What is beamforming?

- Beam forming = data reduction
- Exploit sensors' covariance

- Sensors can be of various nature:
- Non-co-located antennas
- Time samples
- Pixels
- Frequency channels
- Beamformers can be of various nature:
- Spatial beamformers
- Time-domain digital filters
- Spatial (image) filters
- Cyclic filters

Beamformed output

What is beamforming?

- Beam forming = data reduction
- Exploit sensors' covariance
- Sensors can be of various nature:
- Non-co-located antennas
- Time samples
- Pixels
- Frequency channels
- ...
- Beamformers can be of various nature:
- Spatial beamformers
- Time-domain digital filters
- Spatial (image) filters
- Cyclic filters

Beamformed output

What is beamforming?

- Beam forming = data reduction
- Exploit sensors' covariance

- Sensors can be of various nature:
- Non-co-located antennas
- Time samples
- Pixels
- Frequency channels
- ...
- Beamformers can be of various nature:
- Spatial beamformers
- Time-domain digital filters
- Spatial (image) filters
- Cyclic filters
- ...

Beamformed output

Adaptive beamforming

- Deterministic methods
- Statistical methods

$$
\begin{array}{rlr}
\mathbf{w}_{\text {adapt }}=\underset{\mathbf{w}}{\operatorname{argmax}} & \phi[\mathbf{w}, \mathbf{x}(t), \ldots] \\
& \text { subject to } & \psi[\mathbf{w}, \mathbf{x}(t), \ldots]
\end{array}
$$

Examples:

- Max SNR
- MSC
- LCMV

Adaptive beamforming

Mono-beam system:

Adaptive beamforming

Multi-beam system:

Multi-beamforming approach

$$
\mathbf{W}=\left[\begin{array}{llll}
\mathbf{w}_{1} & \mathbf{w}_{2} & \cdots & \mathbf{w}_{N_{b}}
\end{array}\right] \quad \text { beamforming matrix }
$$

with : $\quad \mathbf{w}_{k}=\left[\begin{array}{llll}w_{k_{1}} & w_{k_{2}} & \cdots & w_{k_{M}}\end{array}\right]^{T} \quad$ beamforming vector

Multi-beamforming approach

$$
\mathbf{W}_{\text {opt }}=\underset{\mathbf{W}}{\operatorname{argmax}} f(?, \mathbf{W})
$$

Multi-beamforming approach

$$
\mathbf{W}_{\mathrm{opt}}=\underset{\mathbf{W}}{\operatorname{argmax}} \mathrm{f}(?, \mathbf{W})
$$

e.g.

$$
\mathbf{W}_{\text {opt }}=\underset{\mathbf{W}}{\operatorname{argmax}} \operatorname{SNR}\left(\mathbf{x}(t), \mathbf{W},\left[\begin{array}{l}
\theta_{\text {noise }} \\
\phi_{\text {noise }}
\end{array}\right],\left[\begin{array}{l}
\theta_{1} \\
\phi_{1}
\end{array}\right], \ldots,\left[\begin{array}{l}
\theta_{N_{b}} \\
\phi_{N_{b}}
\end{array}\right]\right)
$$

Multi-MaxSNR approach

- Sensitivity maximized in N_{b} (physical) directions
- Equivalent directivity pattern $=$ discrete collection of sensitive beams
- Physical interpretation \Rightarrow single dish emulates N_{b} single dishes
- Statistically optimum for discrete collection of far-field point-sources (e.g. 5G)
- Possible application : targeted survey
- Sub-optimal for all other data model

Multi-MaxSNR approach

- Sensitivity maximized in N_{b} (physical) directions
- Equivalent directivity pattern $=$ discrete collection of sensitive beams
- Physical interpretation \Rightarrow single dish emulates N_{b} single dishes
- Statistically ontimum for discrete collection of far-field point-sources (e.g. 5G)
- Possib'le application : targeted survey
- Sub-optimal for all other data model

Multi-MaxSNR approach

- Sensitivity maximized in N_{b} (physical) directions
- Equivalent directivity pattern $=$ discrete collection of sensitive beams
- Physical interpretation \Rightarrow single dish emulates N_{b} single dishes
- Statistically optimum for discrete collection of far-field point-sources (e.g. 5G)
- Possible application : targeted survey
- Sub-optimal for all other data model

Multi-MaxSNR approach

- Sensitivity maximized in N_{b} (physical) directions
- Equivalent directivity pattern $=$ discrete collection of sensitive beams
- Physical interpretation \Rightarrow single dish emulates N_{b} single dishes
- Statistically optimum for discrete collection of far-field point-sources (e.g. 5G)
- Possible application : targeted survey
- Sub-optimal for all other data model

Multi-MaxSNR approach

- Sensitivity maximized in N_{b} (physical) directions
- Equivalent directivity pattern $=$ discrete collection of sensitive beams
- Physical interpretation \Rightarrow single dish emulates N_{b} single dishes
- Statistically optimum for discrete collection of far-field point-sources (e.g. 5G)
- Possible application : targeted survey
- Sub-optimal for all other data model

Multi-MaxSNR approach

- Sensitivity maximized in N_{b} (physical) directions
- Equivalent directivity pattern $=$ discrete collection of sensitive beams
- Physical interpretation \Rightarrow single dish emulates N_{b} single dishes
- Statistically optimum for discrete collection of far-field point-sources (e.g. 5G)
- Possible application : targeted survey
- Sub-optimal for all other data model

Information analysis

$$
x_{A}(t)=\mathbf{w}_{A}^{H} \mathbf{x}(t)
$$

$$
=x_{A_{\text {astro }}}(t)+x_{A_{\text {noise }}}(t)
$$

Beam A

Beam B
$x_{B}(t)=\mathbf{w}_{B}^{H} \mathbf{x}(t)$ $=x_{B_{\text {astro }}}(t)+x_{B_{\text {noise }}}(t)$

- Data spatial structure
- Beam-to-Beam correlation

Information analysis

$$
\begin{aligned}
x_{A}(t) & =\mathbf{w}_{A}^{H} \mathbf{x}(t) \\
& =x_{A_{\text {astro }}}(t)+x_{A_{\text {noise }}}(t)
\end{aligned}
$$

Beam A
Beam B

- Data spatial structure
- Beam-to-Beam correlation

Information analysis

$$
\begin{aligned}
x_{A}(t) & =\mathbf{w}_{A}^{H} \mathbf{x}(t) \\
& =x_{A_{\text {astro }}}(t)+x_{A_{\text {noise }}}(t)
\end{aligned}
$$

Beam A

Beam B

$$
\begin{aligned}
x_{B}(t) & =\mathbf{w}_{B}^{H} \mathbf{x}(t) \\
& =x_{B_{\text {astro }}}(t)+x_{B_{\text {noise }}}(t)
\end{aligned}
$$

- Data spatial structure
- Beam-to-Beam corrclation

Information analysis

$$
\begin{aligned}
x_{A}(t) & =\mathbf{w}_{A}^{H} \mathbf{x}(t) \\
& =x_{A_{\text {astro }}}(t)+x_{A_{\text {noise }}}(t)
\end{aligned}
$$

$$
\begin{aligned}
x_{B}(t) & =\mathbf{w}_{B}^{H} \mathbf{x}(t) \\
& =x_{B_{\text {astro }}}(t)+x_{B_{\text {noise }}}(t)
\end{aligned}
$$

$\mathbb{E}\left\{x_{A}(t) x_{B}^{*}(t)\right\} \neq 0$

- Data spatial structure
- Beam-to-Beam corrclation

Information analysis

Beam A

$$
\begin{aligned}
x_{A}(t) & =\mathbf{w}_{A}^{H} \mathbf{x}(t) \\
& =x_{A_{\text {astro }}}(t)+x_{A_{\text {noise }}}(t)
\end{aligned}
$$

$$
\begin{aligned}
x_{B}(t) & =\mathbf{w}_{B}^{H} \mathbf{x}(t) \\
& =x_{B_{\text {astro }}}(t)+x_{B_{\text {noise }}}(t)
\end{aligned}
$$

$$
\mathbb{E}\left\{x_{A}(t) x_{B}^{*}(t)\right\} \neq 0
$$

- Data spatial structure
- Beam-to-Beam correlation

Information analysis

Information analysis

$$
\begin{aligned}
& I_{\text {TOT }}=I_{A_{\text {inde }}}+I_{B_{\text {inde }}}+2 I_{M} \\
& \Rightarrow I_{M} \text { is collected twice }
\end{aligned}
$$

Information-wise efficiency

PAF-instrument optimum \Leftrightarrow no information redundancy
$\Leftrightarrow I_{\text {м тот }}=0$
\Leftrightarrow independence between beams

Independent beam design induce Beam-to-Beam correlation: spatially white field

$$
R_{A B}=\mathbb{E}\left\{x_{A}(t) x_{B}^{*}(t)\right\}=\frac{\mathbf{w}_{A}{ }^{H} \mathbf{w}_{B}}{\left\|\mathbf{w}_{A}\right\|\left\|\mathbf{w}_{B}\right\|}
$$

Information-wise efficiency

PAF-instrument optimum \Leftrightarrow no information redundancy

$$
\Leftrightarrow \quad I_{M_{\text {TOT }}}=0
$$

\Leftrightarrow independence between beams

Independent beam design induce Beam-to-Beam correlation:
spatially white field

$$
R_{A B}=\mathbb{E}\left\{x_{A}(t) x_{B}^{*}(t)\right\}=\frac{\mathbf{w}_{A}{ }^{H} \mathbf{w}_{B}}{\left\|\mathbf{w}_{A}\right\|\left\|\mathbf{w}_{B}\right\|}
$$

Geometrical interpretation

$$
\frac{\mathbf{w}_{A}{ }^{H} \mathbf{w}_{B}}{\left\|\mathbf{w}_{A}\right\|\left\|\mathbf{w}_{B}\right\|}=\frac{\left\|\mathbf{w}_{A}\right\|\left\|\mathbf{w}_{B}\right\| \cos \theta_{A, B}}{\left\|\mathbf{w}_{A}\right\|\left\|\mathbf{w}_{B}\right\|}
$$

Complex angle:

$$
\cos \theta_{A, B}=\rho \mathrm{e}^{i \psi}
$$

with:

- $\rho=\cos \theta_{H_{A, B}}$ and $\theta_{H_{A, B}}$ is the Hermitian angle
- ψ is Kasner's pseudo-angle

$$
\begin{gathered}
\rho=0 \Rightarrow \text { orthogonality } \\
\rho=1 \Rightarrow \text { co linearity }
\end{gathered}
$$

Geometrical interpretation

$$
\frac{\mathbf{w}_{A}{ }^{H} \mathbf{w}_{B}}{\left\|\mathbf{w}_{A}\right\|\left\|\mathbf{w}_{B}\right\|}=\frac{\left\|\mathbf{w}_{A}\right\|\left\|\mathbf{w}_{B}\right\| \cos \theta_{A, B}}{\left\|\mathbf{w}_{A}\right\|\left\|\mathbf{w}_{B}\right\|}
$$

Complex angle:

$$
\cos \theta_{A, B}=\rho \mathrm{e}^{i \psi}
$$

with:

- $\rho=\cos \theta_{H_{A, B}}$ and $\theta_{H_{A, B}}$ is the Hermitian angle
- ψ is Kasner's pseudo-angle

$$
\begin{gathered}
\rho=0 \Rightarrow \text { orthogonality } \\
\rho=1 \Rightarrow \text { co linearity }
\end{gathered}
$$

Geometrical interpretation

$$
\frac{\mathbf{w}_{A}{ }^{H} \mathbf{w}_{B}}{\left\|\mathbf{w}_{A}\right\|\left\|\mathbf{w}_{B}\right\|}=\frac{\left\|\mathbf{w}_{A}\right\|\left\|\mathbf{w}_{B}\right\| \cos \theta_{A, B}}{\left\|\mathbf{w}_{A}\right\|\left\|\mathbf{w}_{B}\right\|}
$$

Complex angle:

$$
\cos \theta_{A, B}=\rho \mathrm{e}^{i \psi}
$$

with:

- $\rho=\cos \theta_{H_{A, B}}$ and $\theta_{H_{A, B}}$ is the Hermitian angle
- ψ is Kasner's pseudo-angle

$$
\begin{gathered}
\rho=0 \Rightarrow \text { orthogonality } \\
\rho=1 \Rightarrow \text { co linearity }
\end{gathered}
$$

Geometrical interpretation

$$
\text { PAF-instrument optimum } \Leftrightarrow R_{A B}=0
$$

$$
\Leftrightarrow \quad \cos \theta_{H_{A, B}}=0
$$

$\Leftrightarrow \mathbf{w}_{A}$ and \mathbf{w}_{B} are orthogonal

Extend to multiple beams - define $\mathbf{R}_{\text {eff }}$:

Geometrical interpretation

$$
\begin{aligned}
\text { PAF-instrument optimum } & \Leftrightarrow R_{A B}=0 \\
& \Leftrightarrow \cos \theta_{H_{A, B}}=0
\end{aligned}
$$

$\Leftrightarrow w_{A}$ and w_{B} are orthogonal

Extend to multiple beams - define $\mathbf{R}_{\text {eff }}$:

Geometrical interpretation

$$
\begin{aligned}
\text { PAF-instrument optimum } & \Leftrightarrow R_{A B}=0 \\
& \Leftrightarrow \cos \theta_{H_{A, B}}=0 \\
& \Leftrightarrow \mathbf{w}_{A} \text { and } \mathbf{w}_{B} \text { are orthogonal }
\end{aligned}
$$

Extend to multiple beams - define $\mathbf{R}_{\text {eff }}$:

Geometrical interpretation

$$
\begin{aligned}
\text { PAF-instrument optimum } & \Leftrightarrow R_{A B}=0 \\
& \Leftrightarrow \cos \theta_{H_{A, B}}=0 \\
& \Leftrightarrow \mathbf{w}_{A} \text { and } \mathbf{w}_{B} \text { are orthogonal }
\end{aligned}
$$

Extend to multiple beams - define $\mathbf{R}_{\text {eff }}$:

$$
\mathbf{R}_{\text {eff }}=\mathbf{W}^{H} \mathbf{W}=\left[\begin{array}{cccc}
\left\|\mathbf{w}_{1}\right\|^{2} & r_{1,2}^{*} & \cdots & r_{1, N_{b}}^{*} \\
r_{1,2} & \left\|\mathbf{w}_{2}\right\|^{2} & & \\
\vdots & & \ddots & \\
r_{N_{b}, 1} & & & \left\|\mathbf{w}_{N_{b}}\right\|^{2}
\end{array}\right]
$$

with $R_{i, j}=\frac{r_{i, j} r_{i, j}^{*}}{\left\|\boldsymbol{w}_{i}\right\|^{2}\left\|\mathbf{w}_{j}\right\|^{2}}$

Reminder : orthogonalization

$$
\mathbf{R}_{\mathrm{eff}}=\mathbf{W}^{H} \mathbf{W}=\mathbf{U} \cdot \operatorname{diag}\{\mathbf{s}\} \cdot \mathbf{U}^{H}
$$

with:

$$
\mathbf{s}=[\underbrace{\overbrace{1, s_{2}, \ldots, s_{2}}^{\operatorname{rank}\left(\mathbf{R}_{\text {eff }}\right)}}_{\operatorname{dim}\left(\mathbf{R}_{\text {eff }}\right)}]^{T}
$$

Gershgorin circles:

"Efficiency" analysis

Case 1: $\operatorname{dim}\left(\mathbf{R}_{\text {eff }}\right)>\operatorname{rank}\left(\mathbf{R}_{\text {eff }}\right)$

- 0 is eigenvalue with multiplicity $\operatorname{dim}\left(\mathbf{R}_{\text {eff }}\right)-\operatorname{rank}\left(\mathbf{R}_{\text {eff }}\right)$
- $\operatorname{dim}\left(\mathbf{R}_{\text {eff }}\right)$ - $\operatorname{rank}\left(\mathbf{R}_{\text {eff }}\right)$ vectors are linear combination of others
- Same "pattern" can be obtained with less beams (LCMV...)

"Efficiency" analysis

Case 1: $\operatorname{dim}\left(\mathbf{R}_{\text {eff }}\right)>\operatorname{rank}\left(\mathbf{R}_{\text {eff }}\right)$

- 0 is eigenvalue with multiplicity $\operatorname{dim}\left(\mathbf{R}_{\text {eff }}\right)-\operatorname{rank}\left(\mathbf{R}_{\text {eff }}\right)$
- $\operatorname{dim}\left(R_{\text {eff }}\right)$ - rank $\left(R_{\text {eff }}\right)$ vectors are linear combination of others
- Same "pattern" can be obtained with less beams (LCMV...)

"Efficiency" analysis

Case 1: $\operatorname{dim}\left(\mathbf{R}_{\text {eff }}\right)>\operatorname{rank}\left(\mathbf{R}_{\text {eff }}\right)$

- 0 is eigenvalue with multiplicity $\operatorname{dim}\left(\mathbf{R}_{\text {eff }}\right)-\operatorname{rank}\left(\mathbf{R}_{\text {eff }}\right)$
- $\operatorname{dim}\left(\mathbf{R}_{\text {eff }}\right)$ - $\operatorname{rank}\left(\mathbf{R}_{\text {eff }}\right)$ vectors are linear combination of others - Same "pattern" can be obtained with less beams (LCMV...)

"Efficiency" analysis

Case 1: $\operatorname{dim}\left(\mathbf{R}_{\text {eff }}\right)>\operatorname{rank}\left(\mathbf{R}_{\text {eff }}\right)$

- 0 is eigenvalue with multiplicity $\operatorname{dim}\left(\mathbf{R}_{\text {eff }}\right)-\operatorname{rank}\left(\mathbf{R}_{\text {eff }}\right)$
- $\operatorname{dim}\left(\mathbf{R}_{\text {eff }}\right)$ - $\operatorname{rank}\left(\mathbf{R}_{\text {eff }}\right)$ vectors are linear combination of others
- Same "pattern" can be obtained with less beams (LCMV...)

"Efficiency" analysis

5 beams

beam \#1

beam \#4

beam \#2

beam \#5

(information redundancy - unnecessary in radio astronomy, maybe RFI analysis)

"Efficiency" analysis

Case 2: $\operatorname{dim}\left(\mathbf{R}_{\text {eff }}\right)=\operatorname{rank}\left(\mathbf{R}_{\text {eff }}\right)$

- maximum efficiency obtained if $\mathbf{R}_{\text {eff }}$ is diagonal
- need a metric to evaluate efficiency : $\kappa=\frac{\lambda_{\text {max }}}{\lambda_{\text {min }}}$

Example:

Efficiency metric

Condition number:

$$
1 \leq \kappa \leq \frac{\text { Upper }\left\{\lambda_{\max }\right\}}{\text { Lower }\left\{\lambda_{\min }\right\}}
$$

$$
\text { Upper }\left\{\lambda_{\max }\right\}=\max _{j} \sum_{i}\left|\mathbf{R}_{\text {eff }_{i, j}}\right|
$$

$$
\text { Lower }\left\{\lambda_{\min }\right\}=\max \left\{\operatorname{Max}_{j} \sum_{i}\left|\mathbf{R}_{\text {eff }_{i, j}}\right|, 0\right\}
$$

Efficiency metric

Condition number:

$$
\left.\begin{gathered}
1 \leq \kappa \leq \frac{\text { Upper }\left\{\lambda_{\max }\right\}}{\text { Lower }\left\{\lambda_{\min }\right\}} \\
\text { Upper }\left\{\lambda_{\max }\right\}=\max _{j} \sum_{i} \mid \mathbf{R}_{\text {eff }}^{i, j}
\end{gathered} \right\rvert\, \quad \operatorname{Lower}\left\{\lambda_{\min }\right\}=\max \left\{M_{j} \sum_{i}\left|\mathbf{R}_{\text {eff }_{i, j}}\right|, 0\right\},
$$

"Symbiotic" beamforming

$$
\begin{aligned}
& \mathbf{W}_{\text {sym }}=\underset{\mathbf{W}}{\operatorname{argmax}} \quad \iint \mathbf{S N R}(\mathbf{W}, \theta, \phi) d \theta d \phi \\
& \text { subject to } \kappa=1
\end{aligned}
$$

Designing a Symbiotic beamformer

- ?
- work on mathematical formulation and optimization
- uniqueness of solution not ensured (not likely)
- requires further work for imaging (interferometer)
- should provide relationship between \# of beams and Field-of-View

Designing a Symbiotic beamformer

- ?
- work on mathematical formulation and optimization
- uniqueness of solution not ensured (not likely)
- requires further work for imaging (interferometer)
- should provide relationship between \# of beams and Field-of-View

Designing a Symbiotic beamformer

- ?
- work on mathematical formulation and optimization
- uniqueness of solution not ensured (not likely)
- requires further work for imaging (interferometer)
- should provide relationship between \# of beams and Field-of-View

Designing a Symbiotic beamformer

- ?
- work on mathematical formulation and optimization
- uniqueness of solution not ensured (not likely)
- requires further work for imaging (interferometer)
- should provide relationship between \# of beams and Field-of-View

Designing a Symbiotic beamformer

- ?
- work on mathematical formulation and optimization
- uniqueness of solution not ensured (not likely)
- requires further work for imaging (interferometer)
- should provide relationship between \# of beams and Field-of-View

