High-Performance PAFs with CMOS LNAs

B. Veidt¹, L. Belostotski², T. Burgess¹, A. Beaulieu², J. W. Haslett²

¹NRC Herzberg Astronomy and Astrophysics Penticton, BC, Canada
²University of Calgary, Calgary, AB, Canada

PAF Workshop, Cagliari, 24–26 August 2016

National Research Council Canada

Conseil national de recherches Canada

Advanced Focal Array Demonstrator (AFAD) Project

- \triangleright Purpose is to explore noise reduction in room-temperature L-band PAFs
 - ▷ custom low-noise LNA ICs
 - ▷ antenna structures to minimize loss
- \triangleright Initial array had 41 elements with Avago LNA ICs
- Replacement of central 9 elements with elements using CMOS LNAs produced excellent results

1

- \triangleright AFAD-C project
 - $\triangleright~$ larger array ${\sim}96$ elements
 - \triangleright all elements with CMOS LNAs
 - improved single-piece element
 - > digital beamformer
 - ▷ testing on DVA-1 offset Gregorian reflector antennas

Key Parameters

Frequency Range	0.7–1.5 GHz
Element Spacing	100 mm ($\lambda_{min}/2$)
Element Thickness	5 mm
Taper Length	113 mm
Slot Width	3 mm
Overall Length	158 mm
Element Mass	165 g

Focus on Reducing Noise in PAFs

- Phased-array feeds seen as a way to expand the field-of-view of telescopes such as the Square Kilometre Array, Arecibo, ASKAP, and WSRT
- \triangleright Work by various groups has shown that $T_{array} > T_{min}$
- \triangleright Even PAFs using cryogenic LNAs have noise \sim 36K (see Cortés-Medellin, *et al.*, IEEE Trans. AP, 2015)
- Are there ways to reduce the loss between the incoming radiation and the LNA input?
 - \triangleright Make the element thick (3D) to spread surface currents over a larger area
 - ▷ This allows significant reductions in the amount of dielectric used
 - ▷ Allows LNA to be placed at feed point
- \triangleright Other speakers will address cryogenic solutions

AFAD Element and Array

Results with UofC CMOS LNA

How These Measurements Were Made

Noise Calculations

 \triangleright Y-Factor

$$T_{array} = \frac{T_H - YT_C}{Y - 1}$$

 \triangleright Uncertainities

$$P Y \sim 10 \rightarrow \text{error from } T_H \text{ is negligible}$$

$$P \Delta Y < 0.3 \text{ dB} \rightarrow Y_{ratio} \sim 10 \pm 0.7 \rightarrow \Delta T_{array} \sim \pm 2 \text{K}$$

 $\triangleright T_C$ estimate

$$T_C = T_{CMB} + T_{atm} + T_{gal}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$2.7 \qquad 2 \pm 1 \qquad \text{GSM} \pm 16\%$$

 \triangleright Overall

$$\Delta T_{array} = \sqrt{1^2 + 1.5^2 + 2^2} = 2.7 {\rm K}$$

Comments

- $\,\vartriangleright\,$ New results are a motivation to make a large array with all CMOS LNAs
 - $ho~\sim$ 96 elements
 - ▷ suitable for multi-beam operation on a dish
- \triangleright Two factors in the difference in performance
 - ▷ Inherent device performance (GaAs vs CMOS)
 - \triangleright Circuit design
 - $\circ~$ Avago LNA used conventional non-array design
 - $\circ~$ CMOS LNA was designed as part of an array

Possible 96-Element Array Configuration

10

Refinement of Element Fabrication

- ▷ Original 2-piece mechanical design
 - ▷ required several alignment jigs in fabrication
 - > additional machining steps for overlap joint
 - \triangleright pin + screws

New 1-Piece Element

- \triangleright 2-piece design was driven by difficulty of drilling probe pin holes at the centre
- \triangleright Custom tooling eliminates this problem
- ▷ Similar to original proof-of-concept by Craeye and Sarkis!

LNA IC Simplified Circuit Diagram

Conventional (No Array) Design

- \vartriangleright Want power match \simeq noise match
- \vartriangleright But $S_{11}^* \neq \Gamma_{opt}$ for M_1
- \triangleright Tune with L_g and L_s
 - \triangleright feedback through L_s increases real part of Z_{in}
 - \triangleright resonate at f_{upper} where T_{min} is highest

Next Level

- \vartriangleright Add C_{tune}
- \triangleright Changing C_{tune} changes real part of Z_{in} of LNA but **not** Γ_{opt}
- $\triangleright C_{tune}$ provides power match in the lower part of the band

What the CMOS LNA Looks Like

16

[From Beaulieu et al., AWPL, 2016]

LNA Matching Problem for Arrays

17

- Noise emitted from LNA input coupled to other LNAs
- coupling described by the array S-matrix
- \triangleright leads to active noise match
- but dependent upon beamformer weights
- weights dependent upon beams on the sky

Simplifications in This Design

Noise Performance of a Phased-Array Feed with CMOS Low-Noise Amplifiers

Aaron J. Beaulieu, Leonid Belostotski, *Senior Member, IEEE*, Tom Burgess, Bruce Veidt, and James W. Haslett, *Life Fellow, IEEE*

[IEEE AWPL, early access]

- \triangleright Uniform and tapered weights for central 3×3 co-pol elements
 - ▷ no variable placement of focal spot on array
 - ▷ no variation of focal spot size as a function of frequency
- \triangleright Don't consider the case of elements shared between beams

- \triangleright Initially assume LNA can present any passive S_{11}
 - \triangleright map out noise performance as a function of S_{11} at each frequency
- \triangleright Later constrain by S_{11} for actual components

Average Beam-Equivalent Noise Temperature

[From Beaulieu et al., AWPL, 2016]

\triangleright Averaged over 0.7–1.5 GHz

Noise Temperature Compared with Optimal Case

[From Beaulieu et al., AWPL, 2016]

- \triangleright For 11 LNAs
- $\triangleright |S_{11}^{opt}| \rightarrow 1$ but not a practical implementation
- \triangleright Small penalty for actual S_{11}

Refined Design Process

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 63, NO. 6, JUNE 2015

Low-Noise Amplifier Design Considerations For Use in Antenna Arrays

Leonid Belostotski, *Senior Member, IEEE*, Bruce Veidt, Karl F. Warnick, *Fellow, IEEE*, and Arjuna Madanayake, *Member, IEEE*

- Addresses the problem of design when beamformer weights are unknown (usual case)
- Looked at numerous design methods for LNAs embedded in arrays and compared with optimal result
- \triangleright Set LNA Γ_{opt} near average passive array reflection coefficient
- \triangleright Set LNA $|S_{11}|$ as large as possible (effect is important for cases with high coupling)

2508

Digital Beamformer

- \triangleright Digital beamformer much more versatile than an analog BF
 - ▷ more elements
 - ▷ frequency channels
 - ▷ arbitrary weights
- ▷ Measure PAF performance in aperture-array mode.
- ▷ Measure PAF performance on an offset Gregorian dish.
 - $\triangleright~$ compare with AA results
- \triangleright Measure PAF performance as a function of the number of bits
- ▷ Measure PAF performance as a function of the filter bank channel width
- > Explore update rate of the array covariance matrix calculation

Beamformer Specifications

- $ightarrow f_{in}$ = 750 to 1500 MHz (no frequency conversion in front end)
- \triangleright RF bandwidth: at least 300 MHz
- ▷ filter bank channel width: nominally 1 MHz but adjustable
- $\vartriangleright\,$ number of elements: $\,\sim\,$ 100 total
- \triangleright number of output beams: at least 1 per polarization
- ▷ scalar beamforming (i.e. use only one polarization per beam)
- ▷ number of ADC bits: at least 8 but adjustable downwards
- \triangleright array covariance matrix calculation update rate not known
- ▷ location: to be determined (behind array or on ground next to pedestal)

Digital Beamformer Implementation

▷ DRAO-developed Kermode board

- ▷ Eight × Xilinx Virtex-6 SX475T FPGAs per board
- \triangleright Four \times mezzanine cards
- Uses ATCA form-factor and backplane
- Developed in collaboration with Lyrtech (now Nutaq)
 - Nutaq developed board firmware development kit

Digital Beamformer Implementation

Status

- \triangleright 100+ one-piece Vivaldi elements have been fabricated
- \triangleright 100 LNA boards have been fabricated (SMT + wirebond components) and installed in elements
- Backplane and support structure components have been fabricated; need to be assembled
- \triangleright 4×4 analog BF and bias supply units being layed out
- \triangleright Kermode boards being fabricated

References

- Beaulieu, Belostotski, Burgess, Veidt, & Haslett, "Noise Performance of a Phased-Array Feed with CMOS Low-Noise Amplifiers", IEEE Antennas and Wireless Propagation Letters, 2016
- Belostotski, Beaulieu, Burgess, Veidt, & Haslett, "Low Noise Phased-Array Feed with CMOS LNAs" 2016 USNC URSI National Radio Science Meeting, 2016
- Veidt, Burgess, Yeung, Claude, Wevers, Halman, Niranjanan, Yao, Jew, & Willis, "Noise Performance of a Phased-Array Feed Composed of Thick Vivaldi Elements with Embedded Low-Noise Amplifiers", EuCAP, 2015
- Belostotski, Veidt, Warnick, & Madanayake,"Low-Noise Amplifier Design Considerations For Use in Antenna Arrays", IEEE Trans. Antennas and Propagation, 2015, vol. 63, pp. 2508–2520
- Belostotski, Haslett, Veidt, Landecker, Gray, Hovey, Sheehan, & Messing, "The First CMOS LNA on a Radio Telescope", ANTEM, 2014

Some History... An Early PAF?

Dual-Frequency Feed

408 MHz Front End

Fig. 1. Dual-frequency feed for 9-m paraboloidal reflectors. Dimensions are shown in centimeters. Insets show details of the 408-MHz probes and a sketch of the coaxial cable combining network.

From: Veidt, Landecker, Dewdney, Vaneldik, & Routledge, "A 408-MHz Aperture Synthesis Radio Telescope", **Radio Science**, 1985, pp. 1118–1128

Comments

- \triangleright Probes are actually monopole radiators: do not set up a proper waveguide mode because horn is too short ($\sim \lambda/4$)
 - ▷ pattern for each probe is non-symmetric
- ▷ Combining network acts as beamforming network
 - ▷ combine opposing pairs of elements ⇒ make pattern more symmetric
 ▷ progressive 90° phase shift ⇒ circular polarization
- \triangleright What would a modern implementation look like?
 - $\,\triangleright\,$ have LNAs at the probes
 - ▷ use a digital beamformer
 - b might be able to improve radiation properties with proper calibration of beamforming weights

Thank You

