

> Fast Numerical Methods for the Simulation Focal Plane Array

Rémi Sarkis *Université Antonine, Lebanon* Christophe Craeye *Université catholique de Louvain*

2

Index

- Introduction
- ASM-MBF for Large Array Simulation
- Simulation of Large Rectangular Array
- ASM for Circular Array Simulation
- Simulation of Large Hexagonal Array
- Conclusion & Future Works

ASM-MBF for Large Array Simulation Simulation of Large Rectangular Array ASM for Circular Array Simulation Simulation of Large Hexagonal Array Conclusion & Future Works

SKA AFAD Project Focap Plane Array

Next-generation Radio Telescopes: SKA

1937

2016

Grote Reber, built a parabolic, 9.5-m diameter, reflector dish in his backyard

SKA antennas will extends over thousands of Kilometers in SA and Australia.

ASM-MBF for Large Array Simulation Simulation of Large Rectangular Array ASM for Circular Array Simulation Simulation of Large Hexagonal Array Conclusion & Future Works

SKA AFAD Project Focap Plane Array

Advanced Focal Array Demonstrator

Bruce Veidt (NRC-DRAO, Canada)

Bruce Veidt (NRC-DRAO, Canada)

Table: 3D Array specifications

Frequency range	0.7 – 1.5 <i>GHz</i>
Element spacing	$\lambda/2=10$ cm
Array size	$\leq 1m imes 1m$
Element dissipative loss	< 0.1 dB
T_{LNA}	< 15k
G_{LNA}	25 — 35 <i>dB</i>
Array mass	< 50kg

Goal: Simulation and design of Focal Plane Array of 71 antennas.

ASM-MBF for Large Array Simulation Simulation of Large Rectangular Array ASM for Circular Array Simulation Simulation of Large Hexagonal Array Conclusion & Future Works

SKA AFAD Project Focap Plane Array

Large Focal Plane Array

- 5 × 7 antennas polarized along x axis
- 6 × 6 antennas polarized along y axis.

Array periodic structure construction

Connecting basis functions

5

ASM-MBF Goal

Goal Principle Formulation Validation

Goal: Large array analysis with Method-of-moments

 Idea: Compress the MoM matrix using set of current distributions from the solution of smaller problems.

6

ASM-MBF Principle

Goal Principle Formulation Validation

U

Goal Principle Formulation Validation

8

ASM-MBF Formulation

Set of current distributions

$$\bar{\bar{Q}}_i = \left[\bar{\bar{Q}}_{ASM} \ \bar{\bar{Q}}_{small\ array}
ight]$$

All the sets of current distributions are concatenated in Q*imatrix*.

Compress & Solve System

The MoM system of equation is compressed as shown:

$ar{\mathbf{x}}_i = ar{ar{\mathbf{Q}}}_i \, ar{\mathbf{y}}_i$

Linear Combination

Then any current distribution can be expressed as a linear combination of these current sets.

 $\begin{pmatrix} Q_1^T & \cdots & 0 & 0 \\ 0 & Q_2^T & \cdots & 0 \\ 0 & 0 & \cdots & Q_M^T \end{pmatrix} \bar{Z} \begin{pmatrix} Q_1 & \cdots & 0 & 0 \\ 0 & Q_2 & \cdots & 0 \\ 0 & 0 & \cdots & Q_M \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_L \end{pmatrix} = \begin{pmatrix} Q_1^T & \cdots & 0 & 0 \\ 0 & Q_2^T & \cdots & 0 \\ 0 & 0 & \cdots & Q_M^T \end{pmatrix} \bar{V}$ $\bar{Z}_{Compressed}$

M is the number of basis functions L is the number of current distributions N is the number of the array antennas Size of Z is $(N^*M)x(N^*M)$ M = 838Size of Zcompressed is $(N^*L)x(N^*L)$ L = 28Compression ratio = (M/L)Cr= 30

Goal Principle Formulation Validation

ASM-MBF Validation & Discussions

3D Bowtie antenna:

- Meshed by M = 180 basis functions
- And compressed by ASM (3x3) L = 9
- Compression ratio is 20.

We compare the CPU time:

Brute-force

C-code program Pentium (R) 4 CPU 3,06 GHz 1,5 GB of RAM CPU time:4h 21min

ASM-MBF

Matlab program Pentium (R) 4 CPU 3,06 GHz 1,5 GB of RAM CPU time:1h 19min

Conclusion

- Matrix interaction calculation represents an important share of time. This is proven to be reduced using Multipoles [2].
- This method is interesting for Very Large Array where memory resources needed bypass the available memory capacity.
- The most important thesis of this method is the complexity reduction of the problem and the quality of the results.
 Error below -40 db using only ASM (4×4).
- This ASM-MBF method stays applicable with dielectric structures. Further works has been done in [1].

[1] Ozdemir N. A. and Craeye C., Efficient analysis of periodic structures involving finite dielectric material based on the array scanning method," Int. Conf. on Electromagnetics in Advanced Applications, Torino, Italy, Sept. 14-18, 2009.

[2] C. Craeye, "A fast impedance and pattern computation scheme for finite antenna arrays," Antennas and Propagation, IEEE Transactions on, vol. 54, no. 10, pp. 3030 – 3034, oct. 2006.

9

Potential of 3D TSA

Design of 3D TSA ASM-MBF Calculation Full Array Simulation Prototype & Measurements

Layout of 3D TSA

Feed inside the structure

Advantages of Metal only Vivaldi:

- Direct feed almost no soldering required.
- No dielectric material: dielectric loss elimination.
- Host LNA as near as possible to feed: reduced noise level.
- Highly modular -> easy upgrade of the system since each element can be treated alone.
- Easy to manufacture and mount.
- Stability and reproducibility of the array.
- Cost becomes fair for mass production.

ASM-MBF for Large Array Simulation

Simulation of Large Rectangular Array

ASM for Circular Array Simulation Simulation of Large Hexagonal Array Conclusion & Future Works Design of 3D TSA ASM-MBF Calculation Full Array Simulation Prototype & Measurements

Feed types investigations

Infinite array simulation with connecting basis functions

Open stub feed

Pin feed with series capacity

Reflection coefficient $\begin{array}{c} 0 \\ -10 \\ -10 \\ -20 \\ -30 \\ -40 \\ 0.5 \end{array}$ $\begin{array}{c} 0 \\ -10 \\ -10 \\ -10 \\ -20 \\ -30 \\ -40 \\ 0.5 \end{array}$ $\begin{array}{c} 0 \\ -10 \\ -10 \\ -20$

With reference to 85 Ohms

ASM-MBF for Large Array Simulation

Simulation of Large Rectangular Array

ASM for Circular Array Simulation Simulation of Large Hexagonal Array Conclusion & Future Works Design of 3D TSA ASM-MBF Calculation Full Array Simulation Prototype & Measurements

12

Optimization of the 3D Vivaldi Antenna

Rémi M. Sarkis Focal Plane Antenna Arrays for Astronomic Applications

ASM-MBF for Large Array Simulation

Simulation of Large Rectangular Array

ASM for Circular Array Simulation Simulation of Large Hexagonal Array Conclusion & Future Works Design of 3D TSA ASM-MBF Calculation Full Array Simulation Prototype & Measurements

(4x4) ASM current distributions

Infinite simulation

• We extracted 16 current distributions from the ASM simulations.

Introduction ASM-MBF for Large Array Simulation

Simulation of Large Rectangular Array

ASM for Circular Array Simulation Simulation of Large Hexagonal Array Conclusion & Future Works

Small Finite Array

Design of 3D TSA ASM-MBF Calculation Full Array Simulation Prototype & Measurements

• Finite Simulation

• We extracted 12 current distributions from the simulation of this array.

ASM-MBF for Large Array Simulation

Simulation of Large Rectangular Array

ASM for Circular Array Simulation Simulation of Large Hexagonal Array Conclusion & Future Works Design of 3D TSA ASM-MBF Calculation Full Array Simulation Prototype & Measurements

71 Antenna Array Simulation Results

ASM-MBF for Large Array Simulation

Simulation of Large Rectangular Array

ASM for Circular Array Simulation Simulation of Large Hexagonal Array Conclusion & Future Works Design of 3D TSA ASM-MBF Calculation Full Array Simulation Prototype & Measurements

16

Truncation Effects at Array Borders

Rémi M. Sarkis Focal Plane Antenna Arrays for Astronomic Applications

ASM-MBF for Large Array Simulation

Simulation of Large Rectangular Array

ASM for Circular Array Simulation Simulation of Large Hexagonal Array Conclusion & Future Works Design of 3D TSA ASM-MBF Calculation Full Array Simulation Prototype & Measurements

Simulation vs. Measurements

Vivaldi 3D dimensions

- Width a = 10 cm
- Height b = 14 cm
- Cavity diameter c = 2 cm
- Slot Width d = 0.3 cm
- Thickness = 0.5 cm

S-parameters Simulations vs. measurements

 $\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ &$

(b) S_{12} simulation vs. measurements.

- (c) S_{13} simulation vs. measurements.
- (d) S_{14} simulation vs. measurements.

Frequency (GHz)

• Excellent agreement between the simulation and measurements.

Simulation of Large Hexagonal Array Conclusion & Future Works Goal Principle Formulation Application

*Periodic sector

Rectangular Arrays Vs Circular Arrays

Less truncation effect at the border of the array.

- Advantage of the rotation similarity of the radiation pattern.
- Polarimetric advantage using different polarizations.
- Rotational symmetry: pattern calibration is made easier.

Multiple polarizations

Goal Principle Formulation Application

Array Scanning Method (ASM)

Current Distribution
$$I(m) = rac{1}{2\pi} \int_0^{2\pi} I^\infty(\psi) e^{-jm\psi} d\psi$$
 (1)

Conclusion & Future Works

Goal Principle Formulation Application

ASM for Circular Array

$$(Z_{1,1} \quad Z_{1,2}e^{j\psi_{p}} \quad \dots \quad Z_{1,N}e^{j(N-1)\psi_{p}}) (I_{\psi_{p}}^{\infty}) = (V_{1}(\psi_{p}))$$
 (3)

$$\left(\sum_{m=0}^{N-1} Z_{1,m+1} e^{jm\psi_p}\right) \left(I_{\psi_p}^{\infty}\right) = \left(V_1(\psi_p)\right) \tag{4}$$

ASM yields exact solution

$$I(m) \approx \frac{1}{N} \sum_{\rho=0}^{N-1} I^{\infty}(\psi_{\rho}) e^{-jm\psi_{\rho}}$$
(5)

- MoM system (N*M)x(N*M) solution is reduced to N*(MxM) systems
- N antennas and M basis functions to discretize each antenna,

Goal Principle Formulation Application

Dense Hexagonal Array

Periodic element of the array

Dense Hexagonal Array

Outer

Goal Principle Formulation Application

 $1GH_{7}$

Goal Principle Formulation Application

Inner

Goal Validation Hexagonal Array Results Rectangular Array Results

Large Hexagonal Array

Goal Validation Hexagonal Array Results Rectangular Array Results

ASM-MBF for Large Hexagonal Array

2x2 ASM combined with 12 elements finite array

Current error is below 40dB

Goal Validation Hexagonal Array Results Rectangular Array Results

Hexagonal Vs. Rectangular Array

Goal Validation Hexagonal Array Results Rectangular Array Results

Large Hexagonal Array

Single antenna

Infinite simulation

UC

Finite simulation

90 elements Hexagonal Array

ASM-MBF

Rémi M. Sarkis Focal Plane Antenna Arrays for Astronomic Applications 27

Goal Validation Hexagonal Array Results

Rectangular Array Results

Center element antenna 15 Pol1

Goal Validation Hexagonal Array Results Rectangular Array Results

Center element antenna 42 Pol2

Goal Validation Hexagonal Array Results Rectangular Array Results

Center element antenna 72 Pol3

Goal Validation Hexagonal Array Results Rectangular Array Results

Large Rectangular Array

Single antenna

Infinite antenna

12 elements array

63 elements rectangular array

ASM-MBF

UCL

Goal Validation Hexagonal Array Results Rectangular Array Results

Center element 16 Pol1

Goal Validation Hexagonal Array Results Rectangular Array Results

Center element 44 Pol2

Conclusion

Conclusion Future Works

- We presented ASM-MBF for the simulation of Large Focal Plane Array
- Link between ASM and Block circulant matrix solution.
- Novel design of 3D Vivaldi antenna
 - Light weight of the antenna.
 - Precise fabrication technology.
 - Suitable to host LNA.
- Study of different circular array structures
 - Dense and Concentric Hexagonal arrays.
 - Easier Calibration: Radiation pattern can be compensated.

