First astronomy results from PAFs

Paolo Serra CSIRO Astronomy and Space Science

- -Serra et al. 2015, MNRAS, 452, 2680, ASKAP HI imaging of the galaxy group IC 1459
- Allison et al. 2015, MNRAS, 453, 1249, Discovery of HI gas in a young radio galaxy at z = 0.44 using the Australian Square Kilometre Array Pathfinder
- Hobbs et al. 2016, MNRAS, 456, 3948, A pilot ASKAP survey of radio transient events in the region around the intermittent pulsar *PSR J1107-5907*
- -Heywood et al. 2016, MNRAS, 457, 4160-4178, Wide-field broadband radio imaging with phased array feeds: a pilot multiepoch continuum survey with ASKAP-BETA
- Abbott et al. 2016, ApJL, 826, 13, Localization and Broadband Follow-up of the Gravitational-wave Transient GW150914
- Harvey-Smith et al. 2016, MNRAS, 460, 218, High-velocity OH megamasers in IRAS 20100-4156: Evidence for a Supermassive Black Hole

ASKAP commissioning and early science

Dave McConnell, James Allison, Keith Bannister, Martin Bell, Aaron Chippendale, Phil Edwards, Lisa Harvey-Smith, Sarah Hegarty, Ian Heywood, Aidan Hotan, Balt Indermuehle, Karen Lee-Waddell, Emil Lenc, Josh Marvil, Chris Phillips, Attila Popping, Pietro Procopio, Wasim Raja, John Reynolds, Bob Sault, Paolo Serra, Maxim Voronkov, Robin Wark, Matthew Whiting

Boolardy Engineering Test Array

Hotan et al. (2014)

6 x 12 m antennas with Mk.1 PAF
b_{min} = 37 m, b_{max} = 916 m
9 beams
freq range: 700 - 1800 MHz
304 MHz instantaneous bandwidth

- 16,416 x 18.5 kHz channels

Allison et al. (2015)

Allison et al. (2015)

Sadler (PI), Allison, Glowacki, Mahoney, Moss & FLASH team 150,000 spectra at z = 0.4 - 1.0 150 deg² in 12 h at 700-1000 MHz 3,700 detections 1,000 spectral indices

Heywood et al. (2016)

PI Norris

- 75% of the sky at 1100-1400 MHz
- 10 µJy rms at 10" resolution $(40 \times NVSS sensitivity at 5 \times the resolution)$
- 70 million detections (2.5 million over the entire history of radio astronomy so far)

Evolutionary Map of the Universe

ASKAP HI imaging of the galaxy group IC 1459 (Serra et al. 2015)

ASKAP HI imaging of the galaxy group IC 1459 (Serra et al. 2015)

ESO 406-G42

ESO 406-G40 🗭

IC 5273

NGC 7421 () NGC 7418A

I deg

Kilborn et al. (2009)

WALLABY

area resolution noise (20 km/s) nr detections redshift range 3п (~1,000 fields) 0.5 arcmin, 4 km/s 0.7 mJy/beam 500,000 0 - 0.26

WALLABY PIs: Koribalsky & Staveley-Smith

HIPASS

3n 15 arcmin, 18 km/s 13 mJy/beam 5,000 0 - 0.04

How well do we know our beams?

Heywood et al. (2016)

Serra et al. (2015)

How well do we know our beams?

Heywood et al. (2016)

Need well known (e.g., shape constrained) and stable (on-dish radiator) beams

Serra et al. (2015)

Noise correlation

Ian Heywood

Noise correlation

Ian Heywood

Noise correlation

Need to know **C** as a function of frequency

Ian Heywood

Bandpass calibration

BETA: 15 min on B1934-638 per beam For ASKAP's 36 beams this would be 9 h

Significant change compared to single-pixel feeds: cannot bandpass calibrate before/after every 12-h track

Bandpass calibration

BETA: 15 min on B1934-638 per beam For ASKAP's 36 beams this would be 9 h

Significant change compared to single-pixel feeds: cannot bandpass calibrate before/after every 12-h track

Need to characterise bandpass stability: stable enough for long enough?

- Six refereed astronomy papers from ASKAP/BETA in 2015/2016 Radio continuum imaging Spectral line emission and absorption imaging Variable radio sky
- Many lessons/questions from ASKAP/BETA (McConnell et al. 2016, PASA) Beam shape, stability, correlation Calibration strategies **RFI** mitigation

- ASKAP-12 now taking data: expect heaps of new exciting science!